Теплопроводность дерева и кирпича
Теплопроводность древесины
Теплопроводность является одним из ключевых показателей строительных материалов, используемых для возведения стен, кровли и обустройства напольных покрытий. Теплопроводность материала означает его способность проводить сквозь себя тепло (за счет движения частиц внутренней структуры: молекул, атомов).
Таким образом, теплопроводность каких-либо ограничивающих конструкций (стены, например), влияет на перенос тепла с одной стороны – через материал – на другую. Иными словами, показатель теплопроводности определенного материала влияет на энергетическую эффективность объекта, построенного из данного материала.
В силу климатических особенностей нашей страны, важным показателем качественного жилья является способность сохранять тепло внутри помещений. Если этой способностью жилье не обладает, то первая же зима потребует весьма серьезных затрат на отопление.
Давно замечено, чем плотнее среда – тем лучше теплопроводность, и тем быстрее будут происходить потери тепла. В этом кроется основное противоречие, с которым столкнулось человечество еще на заре осмысленного строительства: чем крепче материал, тем он плотнее. К счастью, древесина представляет собой идеальный баланс данных характеристик. Теплопроводность дерева является низкой (0,12 – 0,4 Вт на кубометр), но при этом древесные материалы отличаются хорошими прочностными показателями. Именно поэтому строительство из дерева получило столь широкое распространение.
Для сравнения, укажем во сколько раз выше теплопроводность других материалов:
- пустотелый кирпич — в 3 раза;
- силикатный кирпич – в 8 раз;
- бетон – в 9 раз;
- железо – в 11 раз.
Иными словами, для того, чтобы обеспечить такой же уровень теплоизоляции, как у деревянной стены, необходимо возводить стену в 3 раза шире, если вы используете пустотелый кирпич.
Плотность дерева
Плотность стройматериалов
Отметим, что теплопроводность древесины меняется под воздействием некоторых факторов. Основным из них является влажность.
Рассмотрим механизм подробнее.
Причина относительно низкой теплопроводности дерева кроется в его волокнистой структуре. Между волокнами имеются пустоты, которые заполнены воздухом. Так как воздух отличается весьма малой плотностью, это и обеспечивает высокий показатель теплоизоляции.
Если же влажность древесины увеличивается, то пространство между волокнами заполняются влагой. Плотность воды выше (примерно в 25 раз) плотности воздуха, а потому и теплопроводность сырой древесины выше.
Кстати, на похожем принципе пустот создан целый ряд новых материалов, как правило, относящихся к группе вспененных полимеров, которые имеют очень низкий показатель теплопроводности (пенопласт).
Так же теплопроводность дерева зависит от сорта древесины. Скажем, дуб является более плотным, чем сосна, поэтому его теплопроводность выше. Так же теплопроводность любой древесины выше в направлении вдоль волокон, что следует учитывать при отделочных работах.
К слову, аналогично теплопроводности изменяется и звукопроводимость дерева: чем выше плотность и влажность, тем лучше передается звук.
Теплопроводность дерева и кирпича
От производителя! Низкие цены!
Бесплатная доставка!
8-800-222-24-96 (звонок бесплатный), +7 (925) 171-70-46,
+7 (916) 334-64-66, +7 (929) 996-86-62
Кирпич или дерево? Определяемся с выбором.
Многообразие глиняного кирпича делает дома прочными, надежными и красивыми
Дом должен быть безопасным, красивым, надежным и комфортным. Все это возможно, если ответственно и осознанно отнестись к выбору материалов для его строительства.
Самыми распространенными материалами для строительства домов являются кирпич и дерево. Каким быть дому, решаете вы, учитывая достоинства и недостатки обоих материалов.
Кирпич
В Украине этот материал считается традиционным, так как большинство домов строится именно из него, к тому же он хорошо себя зарекомендовал. От не горит; устойчив к атмосферным и биологическим воздействиям; хороший тепло- и звукоизолятор; обладает высокой теплоемкостью, благодаря чему в домах из кирпича тепло зимой и прохладно летом; по экологичности уступает только дереву; не гниет и не подвержен воздействию насекомых; эстетичен, даст возможность воплощать различные архитектурные замыслы, сочетается с бутовым камнем, стеклом, металлом и штукатуркой; в кирпичных стенах легко прокладывать вентиляционные каналы и прочие коммуникации.
Если говорить о стенах, то нужно посчитать, какой должна быть их толщина, чтобы дом был теплым. При этом учитываются термическое сопротивление — R и коэффициент теплопроводности материала — Kt из которого будут возводиться стены. Толщина стены = R * K. Термическое сопротивление устанавливается государственными нормативами в зависимости от географической широты населенного пункта. Для первой климатической зоны Украины, где находится Киев, для ограждающих конструкций (стен) оно равно 2,2. Коэффициент теплопроводности материала — К зависит от плотности и структуры материала. Чем больше эта величина, тем толще должна быть стена, чтобы сохранить тепло. Для полнотелого глиняного кирпича он составляет 0,52 Вт/м2*К. Простой расчет показывает, что в первой климатической зоне толщина неутепленных кирпичных стен, чтобы удерживать тепло, должна быть не менее 1,14 м. Но есть ли смысл делать их такими толстыми? Поэтому, возводя стены, традиционно применяют сплошную кладку в два кирпича или облегченную (колодцевую), которая позволяет экономить до 25% кирпича, с обязательным утеплением снаружи и последующей отделкой штукатуркой или лицевой керамикой.
Толщина кирпичных стен а зависимости от наружной температуры воздуха
МАТЕРИАЛ ДЛЯ СТЕН
РАСЧЕТНАЯ ТЕМПЕРАТУРА, С
ТОЛЩИНА СТЕН, мм
Кирпич глиняный обыкновенный
Кирпич глиняный пустотелый (эффективный)
Недостатки кирпича в том, что стены из него требуют утепления, а также внутренней и наружной отделки, так как обычный глиняный кирпич имеет не совсем идеальную поверхность. Сезонный дом из кирпича промерзает зимой, так как кирпич имеет капиллярно-пористую структуру и натягивает влагу. Многократные циклы такого процесса приводят к быстрому разрушению стенового материала, который требует ремонта. Кирпичные стены имеют достаточную теплоемкость, а значит и тепловую инертность, поэтому такой дом долго прогревается. Стены из кирпича достаточно тяжелы. Они не терпят деформаций, поэтому для них необходим ленточный фундамент на полную глубину промерзания. Срок службы кирпичного дома составляет около 100 лет.
Жизнь в деревянном доме наиболее полно отвечает природной сущности человека.
Дерево
По статистике из него построено около 70% домов в мире. Традиция строить то дерева насчитывает многие тысячелетия. Деревянный дом — это лучшее, что можно предложить любому кто хочет иметь свое жилье. Дерево — экологичный и эластичный материал, поэтому возводя из него дом, можно не только воплотить самые смелые архитектурные идеи, но и создать благоприятную среду обитания. Его качества; прочность, морозостойкость, низкая звукопроводность, высокая теплоемкость, способность легко обрабатываться и монтироваться, а также аромат, цвет, рисунок — делают его незаменимым в строительстве уютного дома. К тому же дерево — это природный кондиционер, который позволяет стенам дома из бруса или бревна в закрытом помещении обменивать до 30% воздуха.
При расчете толщины стены деревянного дома учитывается коэффициент теплопроводности дерева, который составляет 0,14 Вг/м2*К. Исходя из этих данных, можно определить, что в первой климатической зоне Украины деревянный дом нужно строить из бревен или бруса толщиной минимум 31 см. Но поскольку древесины такого размера не так много, как желающих построить деревянный дом, обычно используют бревна диаметром 22-25 см и в процессе строительства дома их тщательно конопатят.
Дома из дерева по конструктивным особенностям можно разделить на каркасные; каркасно-щитовые; ручной рубки, из бруса; из бревна. Поскольку первые два и последние три вида очень похожи, мы расскажем о каркасно-щитовом доме и срубе из клееного бруса. Срубы строят как из цельных, так и из клееных бруса и бревна.
Толщины 220-230 мм для клееного бруса достаточно, чтобы в построенном из него срубе сохранялось тепло. К тому же деревянный дом, в отличие от кирпичного, нагревается за несколько часов, а не дней. Умелая бригада строителей соберет такой дом за сезон. Благодаря подгонке брусьев и их плотному прилеганию друг к другу стены дома герметичны и выглядят так, будто сделаны из цельного материала. Поэтому изнутри не нуждаются в дополнительной отделке. Срок службы такого дома — более 100 лет. Каркасно-щитовые дома представляют собой деревянный каркас из брусьев и балок различного сечения, начинкой для которого служит утеплитель. С внешней стороны его зашивают щитами, влагостойкой фанерой, доской, вагонкой или ориентированно-стружечными влагостойкими плитами, которые покрывают фасадной штукатуркой и отделывают блок-хаусом или сайдингом. Со стороны внутренней облицовки обязательно устраивают пароизоляцию и зашивают каркас гипсокартоном, на который можно наносить декоративное покрытие. Каркасные системы удобны тем, что они гораздо дешевле срубов, позволяют возводить дома как но готовым проектам, так и учитывать пожелания заказчика даже в ходе строительства дома, быстро возводятся, не подвержены усадке, могут вводиться в эксплуатацию сразу после завершения строительства. Каркасный дом относится к легким домам, и для него можно устроить столбчатый фундамент, который гораздо дешевле ленточного. Но каркасно-щитовые конструкции имеют такой недостаток, как гулкость, и требуют дополнительной шумоизоляции, зато выдерживают неограниченное количество циклов «замораживание — оттаивание». Срок службы дома такой конструкции — 25-30 лет. Хотя если древесину хорошо защитить и утеплить, то его можно увеличить в два раза.
Недостатки дерева в том, что, во-первых, это горючий материал, во-вторых, — подверженный воздействию влаги и поражению насекомыми. Поэтому древесину еше до начала строительства надо обрабатывать специальными защитными средствами — антисептиками и антипиренами, а уже готовый дом покрывать ими каждые четыре-пять лет, поскольку они вымываются и выветриваются. Дома, построенные из цельного бруса или бревна, в течение двух лет после завершения строительства дают усадку на 5-10%. В первый год это особо ощутимо, а потому дверные и оконные проемы оставляют свободными до следующего года. И когда уже устанавливают окна и двери, над ними оставляют зазор около 5 см, закладывая его паклей. В процессе строительства срубов дерево всегда конопатят прокладками, обработанными антисептиками. Второй раз эту операцию надо выполнить после усадки дома, а это весьма дорого.
ВЫБОР МАТЕРИАЛА ДЛЯ СТЕН
Сравнительная таблица параметров деревянного и кирпичного домов
Теплопроводность газобетонных блоков
Химическая реакция при смешивании извести и алюминиевой пудры в цементном растворе происходит с выделением водорода. В процессе автоклавной сушки получают газобетон с равномерно распределенными открытыми ячейками неодинаковой формы. Пористая структура материала определяет его основные физические характеристики: небольшой вес при крупных размерах, паропроницаемость, изоляционные свойства. Низкая теплопроводность газобетона зависит от его плотности. Чем больше воздушных пор в объеме, тем медленнее предается тепловая энергия и дольше сохраняется комфортная атмосфера внутри помещения.
Теплотехнические свойства газоблоков
Ограждающие конструкции являются источником теплопотерь во время отопительного сезона. Поэтому при строительстве и теплоизоляции частных коттеджей используют пористые материалы. Газобетон в зависимости от плотности, которую измеряют в кг/м3, производят различных марок:
- D300–D400 применяют в качестве теплоизоляции;
- D500–D900 используют, как утеплитель и при одноэтажном строительстве;
- D1000–D1200 применяют в несущих конструкциях высотных зданий.
Марка D600 указывает, что в кубометре пористого бетона содержится 600 кг твердых компонентов, которые занимают примерно треть объема. Воздух в ячейках нагревается намного медленнее и является естественным препятствием для передачи тепла. Значит, чем меньше плотность монолита, тем лучше его изоляционные свойства. Теплопроводность газоблока в сравнении с другими материалами отличается низкими значениями:
Наименование | Коэффициент теплопроводности, Вт/м °C | |||
Плотность, кг/м3 | ||||
D300 | D400 | D500 | D600 | |
Газобетон при влажности 0% | 0,072 | 0,096 | 0,112 | 0,141 |
5% | 0,088 | 0,117 | 0,147 | 0,183 |
Пенобетон при влажности 0% | 0,081 | 0,102 | 0,131 | 0,151 |
5% | 0,112 | 0,131 | 0,161 | 0,211 |
Дерево поперек волокон при влажности 0% | 0,084 | 0,116 | 0,146 | 0,151 |
5% | 0,147 | 0,181 | 0,183 | 0,218 |
Пеноблоки имеют сходную структуру с газобетоном, но отличаются замкнутыми ячейками и высокой плотностью. Вспененный бетон застывает в формах и имеет неточную геометрию по сравнению с другими стройматериалами. Поэтому как теплоизоляцию чаще используют газосиликатные блоки.
Дерево считается самым экологичным материалом для строительства комфортного, «дышащего» жилища с наиболее благоприятными условиями микроклимата. Но теплопроводность стен такого дома выше газобетонных. Ячеистые блоки обладают паропроницаемостью, огнеупорностью, биостойкостью и при надежной гидроизоляции с успехом заменяют древесину. Тщательнее всего необходимо оградить фундамент и цоколь, чтобы пористая структура не натягивала влагу из грунта. Для этого использую битум и рубероид.
Теплопроводность кирпича и газоблока
Традиционный строительный материал для возведения частных домов – кирпич отличается прочностью, морозостойкостью и долговечностью. Такие показатели возможны при высокой плотности искусственного камня. По сравнению с газоблоком кирпичные стены делают многослойными. Применение «сэндвич» технологии позволяет прокладывать теплоизоляцию между наружной и внутренней кладкой.
Наименование | Средняя теплопроводность, Вт/м °C |
Блок из газобетона | 0,08-0,14 |
Кирпич керамический | 0,36-0,42 |
– глиняный красный | 0,57 |
– силикатный | 0,71 |
Теплоизолирующие свойства ограждений зависят от их толщины. Чем массивнее стены, тем медленнее будет охлаждаться внутреннее пространство дома. При проектировании толщины ограждения следует учитывать мостики холода – слой цементного раствора между элементами кладки. Блоки монтируют с помощью пазовых замков и специального клея. Такой способ позволяет сократить до минимума тепловые потери. Чтобы сэкономить средства на закупке стройматериалов, необходимо знать характеристики сборных конструкций стандартной толщины:
Наименование | Толщина наружной стены | ||||
12 см | 20 см | 24 см | 30 см | 40 см | |
Теплопроводность, Вт/м °C | |||||
Кирпич белый | 7,51 | 4,52 | 3,75 | 3,12 | 2,25 |
красный | 6,75 | 4,05 | 3,37 | 2,71 | 2,02 |
Газоблок D600 | 1,16 | 0,72 | 0,58 | 0,46 | 0,35 |
D500 | 1,01 | 0,61 | 0,52 | 0,42 | 0,31 |
D400 | 0,82 | 0,51 | 0,41 | 0,32 | 0,25 |
Благодаря низкой теплопроводности в южных районах частные коттеджи строят из газобетона D400 толщиной 20 см, в средней полосе используют пористые элементы D400 с шириной 30 см или D500 – 40 см. В условиях севера возводят многослойные стены из конструкционных и изоляционных блоков. Благодаря хорошим теплотехническим характеристикам газобетоном утепляют дома из кирпича, железобетона, пеноблоков.
Дополнительное утепление стен из газобетона не требуется при устройстве навесного вентилируемого фасада. Обрешетку блоков выполняют при помощи дерева или металлического профиля. Такая конструкция не дает атмосферным осадкам проникать под облицовку, но пропускает воздух и позволяет влаге испаряться с поверхности. В качестве отделочных плит используют виниловый или бетонный сайдинг.
Рассчет теплопроводности стен: таблица теплосопротивления материалов
Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.
Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.
Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.
Как рассчитать теплопроводность стены?
Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.
Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.
Теплосопротивление слоя = | толщина слоя (м) |
Коэффициент теплопроводности материала ( ![]() |
Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)
Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.
Единицы измерения теплосопротивления —
Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.
Пример 1
Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?
Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.
Вид кирпича | Коэффициент теплопро- водности*, ![]() | Кирпичная кладка на цементно-песчаном растворе, плотность 1800 кг/м³* | Теплосопроти- вление стены толщи- ной 0,37 м, ![]() |
Красный глиняный (плотность 1800 кг/м³) | 0,56 | 0,70 | 0,53 |
Силикатный, белый | 0,70 | 0,85 | 0,44 |
Керамический пустотелый (плотность 1400 кг/м³) | 0,41 | 0,49 | 0,76 |
Керамический пустотелый (плотность 1000 кг/м³) | 0,31 | 0,35 | 1,06 |
(*из межгосударственного стандарта ГОСТ 530-2007)
Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.
Пример 2
Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14
. Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.
Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .
Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286
. Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.
Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .
Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.
Таблица теплосопротивления материалов
Материал | Толщина материала (мм) | Расчетное теплосо- противлениеа (м² * °С / Вт) |
Брус | 100 | 0,71 |
Брус | 150 | 1,07 |
Кладка из красного кирпича (плотность 1800 кг/м³) | 380 (полтора кирпича) | 0,53 |
Кладка из белого силикатного кирпича | 380 (полтора кирпича) | 0,44 |
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) | 380 (полтора кирпича) | 0,76 |
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) | 380 (полтора кирпича) | 1,06 |
Кладка из красного кирпича (плотность 1800 кг/м³) | 510 (два кирпича) | 0,72 |
Кладка из белого силикатного кирпича | 510 (два кирпича) | 0,6 |
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) | 510 (два кирпича) | 1,04 |
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) | 510 (два кирпича) | 1,46 |
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³) | 200 | 1,11 |
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³) | 200 | 0,69 |
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³) | 200 | 0,65 |
Теплоизоляционные материалы | ||
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС | 50 | 1,25 |
Ветрозащитные плиты Изоплат | 25 | 0,45 |
Теплозащитные плиты Изоплат | 12 | 0,27 |
Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4
, в Финляндии — не менее 5
(это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).
Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.
Кирпич или дерево?
Такой вопрос часто встает перед теми, кто задумал построить загородный дом. Конечно, есть личные предпочтения, однако хорошо, если они будут подкреплены советами профессионалов и реальными данными. В России чаще всего строились из дерева, как самого доступного материала. Однако и горели такие дома не редко, при плотной застройке выгорали целые улицы! Кирпич, напротив, со времен глубокой древности, зарекомендовал себя материалом прочным и долговечным. Благодаря чему многие старинные памятники архитектуры, построенные из кирпича, сохранились до наших дней. В современном строительстве оба материала популярны, и чтобы отдать предпочтение одному или другому – надо серьезно поразмышлять.
Стены любого жилого дома являются основным элементом, обеспечивающим его конструкционную прочность. Они должны нести нагрузку собственного веса, перекрытий, кровли и всего внутреннего содержимого. Стена сопротивляется, в первую очередь, сжимающей нагрузке, поэтому именно этот параметр берется за основу при выборе материала. Если сравнивать дерево и кирпич – безусловно, предпочтительнее последний. Главное преимущество кирпичной кладки – в ее прочности и устойчивости к деформациям растяжения и сжатия.
Теперь рассмотрим, в каком варианте нагрузка на фундамент будет наименьшей. Известно, что масса тела зависит от плотности материала. Объемный вес сухой древесины, в среднем, около 500кгм3 ,тогда как плотность кирпича составляет 1000-2000 кгм3. Естественно, что в случае с кирпичной кладкой, фундамент должен быть более мощным. А деревянный дом можно строить на сравнительно мягких грунтах, его фундамент обойдется дешевле.
Третий критерий – тепловое сопротивление стены. Он тем выше, чем стена толще, а теплопроводность материала меньше. Дерево обладает более низкой теплопроводностью, по сравнению с кирпичом. Так, например, 300мм бревно обеспечивает дом примерно таким же теплом, как 500мм кирпичная кладка. Кирпич обладает тепловой инерционностью. Поэтому протапливать зимой остывший кирпичный дом дольше, чем деревянный.
Важно учитывать и то, как ведут себя материалы при контакте с атмосферной влагой. Способность впитывать и удерживать влагу называется водопоглощением. Дерево, по этому критерию, проигрывает кирпичу, имея высокий коэффициент водопоглощения. Поэтому новый деревянный дом дает усадку до 10% с образованием трещин в каждом бревне или брусе. Дверные и оконные проемы перекашиваются. Кроме того, дерево надо дополнительно защищать от гнили, плесени и насекомых. Кирпич обладает низким водопоглощением (особенно клинкерный) и способностью быстро высыхать. Он инертен к биологическим факторам разрушения.
Огнестойкость– наиважнейший показатель, который нужно учитывать при планировании будущего дома. На вопросе обеспечения пожарной безопасности жилья надо особенно заострить внимание. Ведь большую часть недвижимости уничтожают именно пожары. Дерево воспламеняется и горит быстро, а кирпич имеет очень высокую степень огнестойкости.
Морозостойкость– способность материалов и конструкций противостоять попеременному замерзанию и оттаиванию. Для жителей Северо-Запада России данный показатель также очень важен. Дерево со временем растрескивается под влиянием температурных перепадов и со временем плохо справляется с ветровой нагрузкой, его надо конопатить. А керамический кирпич обладает высокой морозостойкостью и вообще мало подвержен атмосферным влияниям.
Долговечность – характеристика, которая складывается из ряда вышеперечисленных свойств материалов. Проектировщики знают, что средний срок жизни деревянного дома 60-80 лет. Кирпичный дом прослужит хозяевам 100-150 лет без реконструкции, так что в нём может смениться несколько поколений!
Экологичность нужно понимать, как непричинение вреда человеку. Оба материала – и дерево, и кирпич относятся к экологически чистым. Само дерево – природный материал, который при нагревании не выделяет вредных веществ. Однако если древесина обрабатывается химическими составами, то чистота будет далеко не 100-процентная. Самый распространенный керамический кирпич, называемый в простонародье «красным», изготовлен из обожженной глины по технологии, насчитывающей десятки веков. Во время эксплуатации он не выделяет никаких вредных веществ. Дома, построенные из дерева или из керамического кирпича — имеют способность «дышать», что благотворно влияет на внутренний микроклимат и на здоровье проживающих людей.
Скорость строительства. Бывает, что скорость возведения стен является важнейшим требованием. В этом случае надо строить из дерева, так как это быстрее, чем строить из кирпича.
Зачастую решающим фактором при выборе основных материалов являются финансовые возможности застройщика. «Цена проекта» складывается из стоимости материалов (основных и сопутствующих), строительно-монтажных работ и будущих профилактических и ремонтных мероприятий. Стоимость строительства деревянного дома ниже, чем кирпичного. Однако в процессе эксплуатации деревянный дом требует больших затрат, чем кирпичный.
Технологичность. Преимущество дерева состоит в том, что из него можно строить в течение всего года, а время кирпичной кладки ограничено (-5оС). Кирпичная кладка требует более строгого контроля по соблюдению технологии. Однако небольшие габариты кирпичей дают больше возможностей с точки зрения архитектуры. Они позволяют создавать различные конфигурации зданий, в том числе сложные поверхности «третьего порядка» с малыми радиусами кривизны – без дополнительной механической обработки. Кроме того, кирпичная кладка сочетается со всеми видами отделки фасада.
Таким образом, мы подошли к внешнему облику будущего дома. Разговор о декоративности всегда будит воображение! Повторимся, что у кирпичного дом значительно больше возможностей в плане архитектурных изысков. Это касается как формы, так и вариантов наружной отделки. Однако деревянное зодчество имеет своих приверженцев и продолжает развиваться в современном мире.
Теплопроводность пенобетонных блоков
Пенобетон появился в распоряжении застройщиков сравнительно недавно и сразу вызвал к себе большой интерес, что объясняется его пористой структурой. Он не впитывает влагу, имеет небольшой вес и высокую прочность. В построенном из пеноблоков здании всегда будет присутствовать оптимальный микроклимат. Теплопроводность материала гарантирует снижение затрат на обогрев помещений.
Термическое сопротивление конструкции из ячеистых плит успешно справляется с передачей тепла от нагретых предметов к более холодным. Характеристика энергии определяется количественной единицей потока, проходящего сквозь поверхность заданной толщины за установленное время, что применяется при расчете разных профильных изделий.
Теплопроводность пенобетона зависит от структуры, то есть чем больше количество пустот в заданном параметре, тем выше свойство. На показатель наличия воздуха в порах влияет плотность. Правильная геометрическая форма поверхностей блоков обеспечивает уменьшение зазоров при их сборке. Чтобы стена имела монолитный вид, промежутки не должны превышать 2-3 мм. Расстояние большего размера станет причиной сырости основания.
При расчете коэффициента теплопереноса, необходима информация о плотности. Параметр обозначают буквой D с различными цифровыми значениями: при маркировке D800, кубометр пенобетона весит 800 кг.
Теплопроводность по видам
Чтобы выяснить необходимые параметры, следует учитывать подразделение на типы, в зависимости от плотности и предназначения. Теплопроводность различных марок пеноблоков в таблице:
Вид | Предназначение | Марка | Коэффициент теплопроводности |
Конструктивный | Фундаменты, подвалы, подземные гаражи, несущие стены | D1000, D1100, D1200 | 0,30-0,40 Вт/м°С |
Конструктивно-теплоизоляционный | Перегородки и несущие стены | D500, D600, D700, D800, D900 | 0,15-0,30 Вт/м°С |
Изоляционный | Контур стен | D300, D350, D400, D500 | 0,10-0,14 Вт/м°С |
В микроячейках пенобетона жидкость находится в закрытом состоянии и не преобразуется в лед даже при очень сильном холоде. Показатель морозостойкости составляет 15, 35, 50, 75 единиц соответственно для марок D600, D700, D800, D1000. Плотность напрямую связана с коэффициентом передачи тепла и несущими свойствами. Поэтому оптимальным вариантом, при возведении монолитных перекрытий с обустройством армопояса, считается конструкционно-изоляционный вид. В многослойных сооружениях пенобетон используют в качестве контурной оболочки.
Основной вопрос, который возникает у застройщика при планировании: как определиться с выбором материала, ведь необходимо учесть свойства, затраты на обработку и монтаж. Для этого можно сопоставить некоторые особенности разных видов:
1. Самым ценным качеством дерева является экологичность. Пеноблоки в этом не уступают, так как содержат натуральные компоненты в своем составе. Благодаря воздушным порам в структуре, происходит естественная регулировка влажности. Кроме того, деревянные дома уступают в скорости постройки. Так как пенобетон имеет большую плотность, он эффективнее сохраняет микроклимат в помещении.
2. При высоком показателе передачи тепла кирпича он в три раза уступает ячеистым блокам. Если сравнить морозостойкость данных материалов, для возведения жилья из пенобетона потребуется уложить один слой, а стены из кирпича строят двойной толщины.
3. Газобетон – это пористый материал, пустоты в котором открыты и сформированы немного иначе, так как технология производства имеет свои особенности. Плотность пенобетона выше, что влияет на теплопроводность. В вопросе экологичности газобетон также проигрывает из-за имеющегося в его составе алюминия.
Теплоизолирующие свойства пеноблоков зависят от формирования внутренних ячеек. Чем больше пор, тем лучше микроклимат помещения. Важно учитывать геометрические параметры, чтобы при строительстве дома не допускать холодных мостиков, которые влияют на потерю энергии.
Теплопроводность клееного бруса
При выборе материалов для строительства дома учитываются различные факторы, среди которых немаловажное значение имеют показатели теплопроводности. Чтобы дом был теплым и уютным, а затраты на его отопление небольшими, важно минимизировать тепловые потери. Деревянные дома всегда отличались прекрасными теплоизоляционными характеристиками. Например, коэффициент теплопроводности сосны – 0,18 Вт/м*С.
Но этот показатель может меняться в зависимости от плотности, влажности и других особенностей древесины. Поэтому пиломатериалы предварительно проходят специальную подготовку. Благодаря использованию современных технологий, застройщики получили отличную альтернативу оцилиндрованным бревнам – клееный брус. Он превосходит другие стройматериалы по многим параметрам, включая и коэффициент теплопроводности – у клееного бруса этот параметр равен 0,1 Вт/м*С.
Сравнение теплопроводности клееного бруса и других стройматериалов
Теплопроводность – важное свойство стройматериала, отражающее его способность принимать тепло от более нагретых объектов или передавать его менее теплым телам. Чем ниже коэффициент теплопроводности, тем лучше материал сохраняет тепло. В нижеприведенной таблице можно наглядно оценить, насколько клееный брус превосходит другие стройматериалы по способности противостоять тепловым потерям.
Материал | Коэффициент теплопроводности, Вт/м*С |
---|---|
Клееный брус | 0,1 |
Сухая древесина | 0,09–0,18 |
Сосна, ель поперек/вдоль волокон | 0,09/0,18 |
Дуб поперек/вдоль волокон | 0,1/0,23 |
Профилированный брус | 0,18 |
Пенобетон | 0,08–0,47 |
Кирпич керамический пустотелый | 0,35–0,52 |
Кирпич красный глиняный | 0,56 |
Керамзитобетон | 0,66–0,73 |
Кирпич силикатный | 0,7–1,1 |
Бетон | 1,51 |
Железобетон | 1,69–2,04 |
Мрамор | 2,91 |
Гранит | 3,49 |
Прекрасные эксплуатационные характеристики клееных брусьев обеспечиваются благодаря особой технологии их изготовления – тщательно высушенные доски из хвойных пород древесины составляются в пакеты и склеиваются между собой с применением специального экологически безопасного клея и прессования. Такая слоистая конструкция обладает многочисленными достоинствами, одним из которых является высокая энергоэффективность. Она достигается благодаря низкой теплопроводности древесины и клея, которые используются при создании клееного бруса.
Поскольку плотность этого материала сравнительно низкая (порядка 500 кг/м3), показатели его теплопроводности также невысоки, что позволяет строить из клееного бруса уютные и комфортные дома. При этом стены домов можно делать более тонкими, чем при использовании других материалов. Например, стены из клееного бруса толщиной 150 мм обеспечивают примерно такую же защиту от тепловых потерь, как и стены из оцилиндрованного бревна диаметром 240 мм.
Преимущества клееного бруса по сравнению с обычным
Сравним клееный и обычный брус по теплопроводности и ряду других важных критериев.
Критерий для сравнения | Обычный брус | Клееный брус |
---|---|---|
Теплопроводность | По сравнению с оцилиндрованным бревном, он меньше накапливает влагу, поэтому лучше противостоит тепловым потерям, но клееному брусу по данному параметру уступает. Требует дополнительной теплоизоляции стен и конопатки. | Теплопроводность клееного бруса почти вдвое меньше, чем обычного (0,1 и 0,18 Вт/м*С). В дополнительном утеплении дома из этого материала не нуждаются. |
Экологичность | Этот материал сохраняет все свойства обычной древесины, включая и экологическую чистоту. | Экологичность Этот материал сохраняет все свойства обычной древесины, включая и экологическую чистоту. Доски для создания дерева – такой же экологически чистый материал, как и другая древесина. Используемый для их соединения клей и защитные пропитки также абсолютно безопасны. Главное – покупать стройматериалы у надежных производителей с безупречной репутацией. |
Прочность, устойчивость к деформации и биологическому разрушению | При хорошей обработке такой материал служит долго, но при высыхании он может немного деформироваться, а при отсутствии надлежащей обработки – гнить. | Клееная древесина очень прочна (благодаря чередованию направления волокон), уверенно сохраняет свою форму и размеры, дает минимальную усадку (1%) и при своевременной обработке уверенно противостоит гнилостным поражениям и другим негативным воздействиям. |
Устойчивость к возгоранию | Обычный брус необходимо обрабатывать специальными составами, чтобы снизить его пожароопасность. | Клееный брус устойчив к возгоранию благодаря отсутствию трещин и щелей, а также за счет обработки специальными пропитками. Со временем обработку антипиренами необходимо повторять. |
Экономическая выгода | Стоимость такого материала ниже, чем клееного бруса или оцилиндрованного бревна, но важно предусмотреть дополнительные затраты на утепление стен, а также внешнюю и внутреннюю отделку. | Сам материал стоит дороже, зато обеспечивается экономия на дополнительной отделке и утеплении. |
Коэффициент сопротивления теплопередачи
Поскольку коэффициент теплопроводности не связан с толщиной материала, его практическое использование затруднительно. Поэтому на практике широко используется обратный параметр – коэффициент сопротивления теплопередачи. Он рассчитывается как отношение толщины материала к его коэффициенту теплопроводности. Требования к данному параметру при строительстве жилых зданий значатся в СНиП II-3-79 и СНиП 23-02-2003.
В зависимости от региона, в котором планируется строительство дома, рекомендованные значения коэффициента сопротивления теплопередачи материала могут быть различными:
Регион | Рекомендуемое тепловое сопротивление стен (min), м2*С/Вт |
---|---|
Якутск, Воркута | 5,6 |
Хабаровск, Чукотка, Камчатка | 4,9 |
Новосибирск, Магадан | 4,2 |
Москва, Санкт-Петербург, Красноярский край, Владимир, Алтай | 3,5 |
Волгоград, Белгород | 2,8 |
Астрахань, Ставрополь | 2,1 |
Сочи | 2,0 |
Для расчета термического сопротивления стены из конкретного материала нужно разделить толщину стены на коэффициент теплопроводности материала, из которого она сделана. Таким образом, для расчета рекомендуемой толщины стен нужно умножить коэффициент теплопроводности на значение теплового сопротивления. Выходит, что при строительстве дома из клееного бруса в Подмосковье или Санкт-Петербурге рекомендуемая толщина стен составляет 350 мм.
В действительности дома и коттеджи из клееного бруса с толщиной стен от 200 мм не нуждаются в дополнительном утеплении и стойко выдерживают даже сильные морозы на севере нашей страны. Дополнительное утепление может потребоваться стенам дачных домов и других сооружений, выполненных из клееного бруса с меньшей толщиной.
Выбор сечения клееного бруса
Выбор ширины сечения клееного бруса зависит от особенностей его использования, прежде всего – от назначения строительного объекта и региона страны, в котором планируется его возведение.
Толщина клееного бруса, мм | Предпочтительное использование | Регионы |
---|---|---|
240 | Дома для круглогодичного проживания | Наиболее морозные и ветреные широты |
200, 212 | Дома для круглогодичного проживания. В большинстве случаев – оптимальный выбор по сочетанию цены и расходов на отопление. | Любые |
160, 168 | Дома для сезонного проживания и временного пребывания зимой. Гостевые, дачные домики, бани. | Любые. Области с теплым климатом |
125 | Летние домики, барбекю, веранды, беседки, бани, строения, в которых не планируется проживание в зимнюю пору, межкомнатные перегородки Дома для круглогодичного проживания | Любые. Регионы с мягким климатом |
85 | Беседки, хозяйственные постройки, лестницы, оконные конструкции и пр. | Любые |
Независимо от того, брус какой толщины вы выберете, стоит учесть, что тепловые потери через стены дома не превышают 33%. Остальное теряемое тепло уходит через оконные и дверные проемы (27%), подвальные и чердачные перекрытия (21%) и вентиляционную систему (19%). Поэтому толщина бруса играет не самую важную роль для обеспечения общей энергетической эффективности дома.
Выводы
Дома из клееного бруса – теплые и комфортные. Они хорошо сохраняют тепло зимой и прохладу летом, требуют сравнительно небольших затрат на отопление и отличаются приятным микроклиматом. Но чтобы построенный дом был максимально уютным и защищенным от существенных тепловых потерь, нужно еще на этапе его проектирования использовать комплексный подход к обеспечению его энергоэффективности. Дома для постоянного проживания обычно строятся из клееного бруса с сечением 200х280 или 212х192 мм, а в наиболее холодных регионах применяется брус с сечением 240х192 или 240х280 мм.
Сравнительная таблица теплопроводности современных строительных материалов
Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.
Схема теплопроводности и толщины материалов.
Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.
Понятие теплопроводности
В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.
Коэффициент теплопроводности кирпичей.
Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.
Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.
Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.
Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.
Факторы, влияющие на величину теплопроводности
Теплопроводность материалов, используемых в строительстве, зависит от их параметров:
Зависимость теплопроводности газобетона от плотности.
- Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
- Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
- Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
- Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
- Влияние температуры на теплопроводность материала отражается через формулу:
где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;
b – справочная величина температурного коэффициента;
Практическое применение значения теплопроводности строительных материалов
Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.
Упрощенная формула, определяющая толщину слоя, будет иметь вид:
Таблица теплопроводности утеплителей.
где, H – толщина слоя, м;
R – сопротивление теплопередаче, (м2*°С)/Вт;
λ – коэффициент теплопроводности, Вт/(м*°С).
Данная формула применительно к стене или перекрытию имеет следующие допущения:
- ограждающая конструкция имеет однородное монолитное строение;
- используемые стройматериалы имеют естественную влажность.
При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:
- СНиП23-01-99 – Строительная климатология;
- СНиП 23-02-2003 – Тепловая защита зданий;
- СП 23-101-2004 – Проектирование тепловой защиты зданий.
Теплопроводность материалов: параметры
Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.
Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.
Значения коэффициентов теплопроводности сведены в таблицу 1:
Материал | Коэффициент теплопроводности, Вт/(м*°С). |
Пенобетон | (0,08 – 0,29) – в зависимости от плотности |
Древесина ели и сосны | (0,1 – 0,15) – поперек волокон 0,18 – вдоль волокон |
Керамзитобетон | (0,14-0,66) – в зависимости от плотности |
Кирпич керамический пустотелый | 0,35 – 0,41 |
Кирпич красный глиняный | 0,56 |
Кирпич силикатный | 0,7 |
Железобетон | 1,29 |
Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.
При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.
Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.
Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.
Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.
Теплопроводность при строительстве
Схема сравнения теплопроводности стен из газобетона и кирпича.
При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:
- 30-40% потерь тепла приходится на поверхность стен;
- 20-30% – через межэтажные перекрытия и крышу;
- около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами;
- приблизительно 10% тепла уходит из помещения через плохо утепленные полы.
Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции. В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.
В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов. Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т.п.
Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.
Здесь можно различить:
Сравнение теплопроводности соломобетонных блоков с другими материалами.
- Каркасный вариант строительства – основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство. В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.
- Возведение стен дома из кирпича, пористых бетонных блоков, дерева – утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.
Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.
Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.